

La cosmologie et les BAO's à 21 cm

Réza Ansari (Université Paris Sud & LAL (Orsay)

CS-IN2P3

Octobre 2015

Thursday, October 22, 15

BAORadio et Tianlai : la cosmologie et les BAO's à 21 cm Rapport soumis au conseil scientifique de l'IN2P3

R. Ansari, J.E.Campagne, M. Moniez LAL, Univ. Paris-Sud , CNRS/IN2P3 *M. Bucher, K. Ganga* APC, Univ. Paris-Diderot, CNRS/IN2P3 *C. Magneville, C. Yèche* Irfu-SPP , CEA *P. Colom, J.M. Martin, S. Torchinsky* Observatoire de Paris, CNRS/INSU

PAON-4: LAL(CNRS/IN2P3), Irfu(CEA), Obs. Paris Meudon (DIL, GEPI, LESIA, UFE, USN-Nancay) NEBuLA: LAL(CNRS/IN2P3), Irfu(CEA), USN (Obs.Paris-CNRS/INSU)

* Brève histoire de l'hydrogène dans l'univers

Les grandes structures et les BAO's à 21 cm

- La cartographie 3D (Intensity Mapping)
- les avant-plans, effets instrumentaux

* Le projet BAORadio France

- * Les grandes étapes de 2007 à 2015
- * Projet en cours : PAON-4, NEBuLA

HIRAX et Tianlai (et CHIME)

SKA (/ LOFAR, EMBRACE)

10

1100

100

50

Age (MY)

T (K)

Z

 $2.5\,10^{-7}$

13800

2.725

0

Spectre du Quasar 3C9 @ z = 2.01Absence d'absorption $Ly - \alpha$ redshifté faible densité de 1'hydrogène neutre (HI) dans l'espace James E. Gunn & Bruce A. Peterson

ApJ. vol 142 , p. 1633-1641 (11/1965)

NOTES

ON THE DENSITY OF NEUTRAL HYDROGEN IN INTERGALACTIC SPACE

Recent spectroscopic observations by Schmidt (1965) of the quasi-stellar source 3C 9, which is reported by him to have a redshift of 2.01, and for which Lyman-a is in the visible spectrum, make possible the determination of a new very low value for the density of neutral hydrogen in intergalactic space. It is observed that the continuum of the source continues (though perhaps somewhat weakened) to the blue of Ly-a; the line as seen on the plates has some structure but no obvious asymmetry. Consider, however, the fate of photons emitted to the blue of Ly-a. As we move away from the source along the line of sight, the source becomes redshifted to observers locally at rest in the expansion, and for one such observer, the frequency of any such photon coincides with the rest frequency of Ly-a in his frame and can be scattered by neutral hydrogen in his vicinity.

The flux can come from three sources; normal galaxies, radiogalaxies, and QSS's, and the intergalactic medium itself. The contribution from the first two sources can be estimated roughly, and almost certainly does not exceed 3×10^{-24} units at z = 2, of which about 10 per cent is from quasi-stellar sources (assuming that one can extrapolate the visual radiation into the UV with a spectral index of -0.7, and assuming a present space density of [600 Mpc]⁻³).

We would like to express our sincere thanks to Dr. Maarten Schmidt, who kindly put the 3C 9 plates at our disposal for measurement. The qualitative conclusions in the present version of this paper are in agreement with the analysis of Dr. J. Bahcall and Dr. E. Salpeter (to be published). We are indebted to Dr. J. Bahcall and Dr. E. Salpeter and also Dr. D. Sciama for pointing out numerical errors in the circulated preprint. This work was supported by the National Science Foundation and the National Aeronautics and Space Administration.

> James E. Gunn Bruce A. Peterson

May 26, 1965; revised July 26 and in proof on October 8, 1965 MOUNT WILSON AND PALOMAR OBSERVATORIES CARNEGIE INSTITUTION OF WASHINGTON CALIFORNIA INSTITUTE OF TECHNOLOGY

REFERENCES

Allen, C. W. 1963, Astrophysical Quantities (London: Athlone Press). Field, G. 1962, Ap. J., 135, 684. Field, G., and Henry, R. 1964, Ap. J., 140, 1002. Karzas, W., and Latter, R. 1961, Ap. J. Suppl., 6, 167. Sandage, A. 1961a, Ap. J., 133, 355. ------. 1961b, ibid., 134, 916. Schmidt, M. 1965, Ap. J., 141, 1295.

Pas de signal à 21 cm si $Ts = T\gamma$ si observé sur le fond diffus (CMB)

HI et Température de brillance à 21 cm

LSS & BAO à 21 cm

3D Intensity mapping

LSS & BAO à 21 cm

De manière analogue aux relevés optiques :

■ Identification des sources HI (21 cm), determination de la position angulaire position et le redshift (raie à 21 cm) - Calcul de la fonction de corrélation à 2 points ou le spectre de puissance P(k) à partir du catalogue d'objets.

Ou similaire aux observations du fond diffus (CMB) :

E Cartographie de l'intensité d'émission (température de brillance) HI (21 cm) - T21(α , δ ,z) - Soustraction des avantplans (synchrotron...), determination du spectre P(k,z) sur les cubes de données 21 cm.

LSS en radio avec des galaxies $S_{21}^{Jy} \simeq 0.021 \, 10^{-6} \, \text{Jy} \, \frac{M_{H_I}}{M_{\odot}} \times \left(\frac{1 \, \text{Mpc}}{D_L}\right)^2 \times \frac{200 \, \text{km/s}}{\sigma_v} \, (1+z)$ $S_{lim} = \frac{2 \, k \, T_{sys}}{A \, \sqrt{2t_{integ} \, \Delta \nu}}$

 S_{lim} en μ Jy pour $t_{integ} = 86400 \text{ s}, \Delta \nu = 1 \text{ MHz}$

 S_{21} en μ Jy pour $M_{H_I} = 10^{10} M_{\odot}$

A (m^2)	Tsys (K)	Slim		Z	S21 (μJy)
5000	50	66		0.25	175
5000	25	33		0.50	40
100000	50	2 5		1.0	9.6
100000		5.5		1.5	3.5
100000	25	1.7	12.3	2.0	2.5
			-		

>100 000 m² \rightarrow SKA!

R.Ansari - Sep 2011

R.Ansari - June 2012

Observations à 21 cm Comparaison avec les techniques optiques

- La raie à 21 cm: unique motif spectral en bande L (autour ~GHz)
 observations spectro-photometrique
- * Band: ~ 100 MHz ... 1500 MHz -v = f(z), z: 0 ... 101420 MHz @ z=0, 946 MHz @ z=0.5, 720 @ z=1, 284 @ z=5, 129 @ z=10
- * Les instruments limités par la limite de diffraction: 700 MHz: D=100 m $\rightarrow \sim 20'$, D=1km $\rightarrow \sim 2'$, D=100 km $\rightarrow \sim 1''$, 2' $\rightarrow 1$ Mpc @ z = 1
- Mesure d'intensité en optique, amplitude & phase in radio; Imagerie / CCD en optique, interférométrie et spectroscopie en radio
- Bruit instrumental (ro-noise <5 e) souvent négligeable en optique, dominant en radio (Tsys~20-50 K)
- Pollution lumineuse (humaine) / émissions atmosphériques en optique / pollution électromagnétique (RFI) d'origine terrestre (/humaine) en radio

LSS/BAO/RSD à 21 cm: Cartes 3D T21(α, δ, z)

- Cartographie 3D de la distribution de l'hydrogène neutre par la mesure du spectre d'émission totale radio en bande L sans identification des sources
- Une résolution angulaire modeste (10-15 arcmin) est suffisant
- Nécessite un grand champ de vue (FOV) et une large bande (BW) instantanés
- Réseau interféromètrique dense à base de petits réflecteurs (haute sensibilité à bas k) (→ grand FOV)
- \equiv Bruit instrumental / environnemental (Tsys)
- \equiv Avant-plans : synchrotron et sources radio
 - Peterson, Bandura & Pen (2006)
 - Chang et al. (2008) arXiv:0709.3672
 - Ansari et al (2008) arXiv:0807.3614
 - Wyithe, Loeb & Geil (2008) arXiv:0709.2955
- Peterson et al (2009) arXiv:0902.3091
- Ansari et al (2012) A&A arXiv:1108.1474

Z	δθ	dlos	Η	δd	δd⊥
0.5	15	1945	90	8.5	0.3
1	20′	3400	120	20	0.3
2	30′	5320	200	45	0.3
3	40′	6320	300	75	0.3

Avant-plans Signal HI : T₂₁ < mK !

http://lambda.gsfc.nasa.gov/

Thursday, October 22, 15

R.Ansari

Radio foreground (GSM) @ 720 MHz (z=1.) - Kelvin

21 cm sky brightness @ 720 MHz (z=1.) - milliKelvin

X

Suppression des avant-plans

- * Exploiter la dépendance spectrale des avants-plans (spectre en loi de puissance ∝ v^β) du rayt. synchrotron et des radio sources
- Effets instrumentaux (mode mixing) propagation des erreurs de soustraction ...

BAORadio de 2007 à 2015

BAQRadio

LAL - IN2P3/CNRS

R. Ansari J.E. Campagne M. Moniez A.S. Torrento D. Breton C. Beigbeder

T. Cacaceres D. Charlet B. Mansoux C. Pailler M. Taurigna

IRFU - CEA

C. Magneville C. Yèche J. Rich J.M. Legoff P. Abbon *E. Delagnes* H. Deschamps C. Flouzat *P. Kestener*

Observatoire de Paris

27 cm

P. Colom J.M. Martin J. Borsenberger J. Pezzani F. Rigaud S. Torchinsky C. Viou

Thursday, October 22, 15

 2007: début du projet BAORadio • LAL (IN2P3/CNRS), Irfu (CEA), Observatoire de Paris • 2007-2009: Développememt de la chaîne BAORadio (électronie - Tests à nançay sur le prototype du CRT à Pittsburgh • 2009-201 • 2011-2012: FAN, Observat **ICluster**, contacts avec le NAOC • 2012-2014: PAON, Tianlai • 2015-2016: NEBuLA, PAON4, Ti • Soutien financier: IRFU, CNRC/P&U, P2I, Obs. de Paris, LAL, PNCG

CRT (CMU, Pittsburgh)

Programme HICluster à Nançay

- * Observation de quelques amas proches (A85, A1205, A2440, $z \le 0.1$)
- Observation au RT en parallèle avec le système BAORadio et l'autocorrelator standard ACRT
- Total ~ 10-20 heures / cible observations réparties sur ~ une année
- Calibration, nettoyage RFI cleaning, analyse des spectres
- ~ 150 TO de données traitées au CC-IN2P3 (transfert par iRods)
- Niveau de sensibilité de ~mK sur une large bande
- Détection/mesure du signal HI sur A85 et A1205

Courbe de sensibilité (radiometer curve) HI-Cluster, BAORadio & NRT correlator

Sigma (mJy)

1324

Interféromètre PAON

- * PAON : PAraboles à l'Observatoire de Nançay
- PAON-4 : 4 réflecteurs D=5m, réseau dense, observation mode transit
- Surface totale ~ 75 m^2, 8 = 4 x 2 (pol) récepteurs , 36 visibilities
 ~ 2 GBytes/s de flot de données maximum
- * 38 S < Elevation < 15 N \rightarrow 10 < δ < 60 à Nançay
- * 250 MHz band , 1250-1450 MHz
- Résolution Interférometrique ~ 1 deg @ 1400 MHz
- Objectifs: RFI cleaning , mesures Tsys et niveau de corrélation entre antennes, test des méthodes de calibration et de reconstruction de cartes 3D en mode transit
- Atteindre un niveau de bruit ~10 mK (/par 1deg x 1 MHz pixels) Vérification de la stabilité instrumentale sur le long terme

PAON Test Interferometer (J.M.Martin, J.E. Campagne)

PAON-4 (F. Rigaud) 4 D=5m dishes

PAON-2 \rightarrow installed September 2012

Inauguration PAON-4 à Nançay - 2 Avril 2015 en présence des directeurs de laboratoires (LAL,USN-Nançay) et du président de l'Observatoire

PAON-4 : lobes, cartes reconstruites (simulations)

J. Zhang, reconstruction de cartes pour interféromètre en mode transit (thèse en cotutelle avec le NAOC)

Thursday, October 22, 15

NEBuLA

- Projet Nançay-LAL-Irfu accepté par le CS Obs. de Paris (CSAA) Décembre 2013, 17k€ (proto) Porteurs: Cédric Viou (Nançay) & Daniel Charlet (LAL)
- Par rapport à l'électronique actuelle dont le design date de 2006-7:
 - On s'affranchit de la partie Mélangeur
 - On réduit la longueur du câble coax.
 - On passe de 250 MHz à 500 MHz de bande
 - Transmission passe à 100% de temps Ciel
 - Ethernet & PCI Express Externe (accès direct mémoire des PCs)
 - à usage PAON et NRT/RadioHéliostat, voire TIANLAI

Evolution vers NEBuLA

NEBuLA / PAON-4 Phase 2

(CHIME), HIRAX et Tianlai

21 cm projects

- CHIME
- Tianlai
- HIRAX
- GBT/Parkes
- BAOBab/BINGO

21 cm surveys can explore huge comoving volumes

Slide: P.Timbie (adaptation par J.E. Campagne)

CHIME

(Canadian Hydrogen Intensity Mapping Experiment)

Prototype

2, 8m dishes 4 channels

Pathfinder

2, 20mx40m cylinders 256 channels, 400 MHz

Full CHIME - funded 4, 20mx100m cylinders 1280 channels, 400 MHz operating in 2016

UBC DRAO McGill NRC-CNRC Toronto

Slide: P. Timbie

HIRAX (a southern hemisphere 21 cm BAO survey)

- Projet mené par l'Afrique du Sud (PI: J. Sievers) en partenariat avec Canada, États-Unis, France
- Financement (NRF / AFS) pour une première phase (réseau de 128 réflecteurs?) obtenu été 2015
- Situé sur le site SKA dans le désert de Karoo, un des meilleurs sites mondiaux de radioastronomie (protégé par la législation sud-africaine)
- Complémentaire avec des relevés similaire de l'hémisphère nord (CHIME, Tianlai) - couverture en z : 0.8 ... 2
- Objectifs scientifiques: P(k) à 21 cm et BAO's Corrélation croisée avec des relevés à d'autres fréquences + pulsars et transients
- Actuellement: implication scientifique de l'APC (M. Bucher, K. Ganga) discussions en cours pour élargir éventuellement cette participation

Vue d'artiste

- Projet mené par le NAOC (PI: X. Chen) en partenariat avec Canada, États-Unis, Corée du Sud, France
- Collaboration constitué en 2011-2012 Financement obtenu en 2012 (?) pour une première phase
- En chine: participation de l'*Institute of Automation* (électronique numérique)
 et *Institute 54* (Antennes, électronique Analogique) + ...
- Recherche de sites à travers le territoire chinois Choix du site en 2013
 Début d'aménagement du site à l'été 2014: construction d'une route (piste) et ligne électrique 10 kV, fibres optiques (7 km) depuis le village le plus proche Construction du lieu de vie et salles électronique/informatique
 Réseau de 3 cylindres (15mx40) et un réseau de 16 réflecteurs (D=6 m) déployé à l'été 2015
 - Phase Tianlai pathfnder: 96 (dual-pol) récepteurs sur les 3 cylindres -Corrélateur 192 voies (FPGA+DSP) en cours d'installation + corrélateur 32, voies pour le réseau des 16 antennes

TIANLAI

Table	1.	The	evneriment	narameters	for	Tianlai
Table	Τ.	THE	experiment	parameters	101	1 lallal.

	cylinders	width	length	dual pol. units/cylinder	Frequency
Pathfinder	3	15 m	40 m	32	700-800 MHz
Pathfinder+	3	$15 \mathrm{m}$	40 m	72	$700-800~\mathrm{MHz}$
Full scale	8	15 m	120 m	256	400 - 1420 MHz

Y. Xu, X. Wang, X. Chen (2015) - ApJ arXiv:1410.7794

Comparaison des différents projets BAO à 21 cm

Contraintes sur l'énergie noire par un relevé de type CHIME ou Tianlai-full

Bull et al. (2015) - ApJ 803 arXiv:1405.1452

SKA

The Square Kilometre Array Exploring the Universe with the world's largest radio telescope

- * Galaxy evolution, Cosmology and Dark Energy
- Strong-field tests of gravity using pulsars and black holes
- Origin and evolution of cosmic magnetism
- Probing the dark ages
- Cradle of life

SKA Phase 1:

- SKA-Low (50-350 MHz) 250 000 antennes, coeur de D~1km et d_max ~ 45 km
- SKA-mid (350-3000 MHz) une centaine de réflecteurs de D ~13-15 m
- début de construction: 2018

Exploring the Universe with the world's largest radio telescope

Thursday, October 22, 15

EMBRACE Pathfinder for SKA

- Perspectives scientifiques prometteuses (DE, distribution de masses HI et son evolution à z ~ 1-2, caractérisation fine des avant-plans, *pulsars* ...) pour les relevés 21 cm à z ~ 1-2
- * Reionisation à plus haut redshift (LOFAR, SKA-Low, HERA)
- PAON-4 & EMBRACE : banc test pour l'analyse des données et développements électronique (NEBuLA) ...
- Tianlai, HIRAX (CHIME) permettront peut-être de développer la cartographie 3D 21 cm et ouvriront la voie à des instruments plus ambitieux: SKA-mid/AA (Aperture Arrays)
- Défis scientifiques et techniques : traitement numérique en ligne (corrélateur/beam-former) calibration, réduction des données, Reconstruction des cartes 3D map, soustraction des avant-plans ...
- Demandes à l'IN2P3 : soutien aux projets en particulier des missions (Chine, Afrique du Sud) - Calcul/Stockage - Éventuellement (dans ±2 ans) une contribution (future) à Tianlai / HIRAX (électronique) ...

